Objective: To address the disability impact on fine hand motor functions in patients with Multiple Sclerosis (MS) by quantitatively measuring finger opposition movements, with the aim of providing a new "score" integrating current methods for disability assessment.
Methods: 40 MS patients (Expanded Disability Status Scale (EDSS): 0-7) and 80 healthy controls (HC) performed a repetitive finger-to-thumb opposition sequence with their dominant hand at spontaneous and maximal velocity, and uni- and bi-manually metronome-paced. A sensor-engineered glove was used to measure finger motor performance. Twenty-seven HC were tested twice, one month apart, to assess test-retest reliability.
Results: The motor parameters showed a good reproducibility in HC and demonstrated significantly worse performance in MS patients with respect to HC. A multivariate model revealed that rate of movement in the spontaneous velocity condition and inter-hand interval (IHI), indicating bimanual coordination, contributed independently to differentiate the two groups. A finger motor impairment score based on these two parameters was able to discriminate HC from MS patients with very low EDSS scores (p<0.001): a significant difference was already evident for patients with EDSS = 0. Further, in the MS group, some motor performance parameters correlated with the clinical scores. In particular, significant correlations were found between IHI and EDSS (r = 0.56; p<0.0001), MS Functional Composite (r = -0.40; p = 0.01), Paced Auditory Serial Addition (r = -0.38; p = 0.02). No motor performance parameter correlated with Timed 25-Foot Walk.
Conclusions: A simple, quantitative, objective method measuring finger motor performance could be used to define a score discriminating healthy controls and MS patients, even with very low disability. This sensitivity might be of crucial importance for monitoring the disease course and the treatment effects in early MS patients, when changes in the EDSS are small or absent.