The effects of aging and electrical stimulation exercise on bone after spinal cord injury

Aging Dis. 2013 Feb 7;4(3):141-53. Print 2013 Jun.

Abstract

Age related bone loss predisposes adults to osteoporosis. This is especially true for individuals with spinal cord injury (SCI). The effects of decreased bone loading with older age and paralysis significantly contribute to decreased bone mass and increased risk for fragility fractures. Loading bone via volitional muscle contractions or by using electrical stimulation are common methods for helping to prevent and/or decrease bone loss. However the effectiveness and safety of electrical stimulation activities remain unclear. The purpose of this review is to investigate the factors associated with aging and osteoporosis after SCI, the accuracy of bone measurement, the effects of various forms of bone loading activities with a focus on electrical stimulation activities and the safety of physical exercise with a focus on electrical stimulation cycling. Osteoporosis remains a disabling and costly condition for older adults and for those with paralysis. Both dual energy x-ray absorptiometry and peripheral quantitative computed tomography are valuable techniques for measuring bone mineral density (BMD) with the latter having the ability to differentiate trabecular and cortical bone. Physical activities have shown to be beneficial for increasing BMD however, the extent of the benefits related to aging and paralysis remain undetermined. Electrical stimulation activities administered appropriately are assumed safe due to thousands of documented safe FES cycling sessions. However, specific documentation is needed to verify safety and to development formal guidelines for optimal use.

Keywords: aging; bone mineral density; electrical stimulation exercise; osteoporosis; spinal cord injury.