Leek (Allium ampeloprasum var. porrum) is one of Belgium's most important outdoor vegetables, mainly cultivated for its white shaft. Fermentation of leek offers opportunities in view of biomass valorization and product diversification. This study deals with the implementation and validation of starter cultures to perform controlled leek fermentations and to ensure a high quality of the end-products. Therefore, a thorough study of the fermentation microbiology and the influence of three starter culture strains (Lactobacillus plantarum IMDO 788, Lactobacillus sakei IMDO 1358, and Leuconostoc mesenteroides IMDO 1347) on the metabolite kinetics of leek fermentation and antioxidant properties of leek was performed. Overall, the application of lactic acid bacteria starter cultures resulted in a fast prevalence of the species involved, coupled to an accelerated acidification. Of the three starter cultures tested, the mixed starter culture of L. plantarum IMDO 788 and L. mesenteroides IMDO 1347 was most promising, as its application resulted in fermented leek of good microbiological quality and in a more extensive carbohydrate consumption, whereby diverse end-metabolites were produced. However, high residual fructose concentrations allowed yeast outgrowth, resulting in increased ethanol and glycerol concentrations, and indicated the lack of a prevailing strictly heterofermentative LAB species. The antioxidant capacity of fermented leek samples, as measured with the oxygen radical absorbance capacity assay, increased when starter cultures were used, whereas with regard to 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity, only leek fermented with L. sakei IMDO 1358 scored higher than spontaneously fermented leek. The total phenolic content was not influenced by the use of starter cultures, while the S-alk(en)yl-L-cysteine sulfoxides content decreased strongly. A preliminary sensory analysis revealed that the spontaneously fermented leek and the one obtained with the mixed starter culture were preferred by consumers, emphasizing again the importance of microbial successions in vegetable fermentations.
Copyright © 2013 Elsevier B.V. All rights reserved.