Rat model for dominant dystrophic epidermolysis bullosa: glycine substitution reduces collagen VII stability and shows gene-dosage effect

PLoS One. 2013 May 23;8(5):e64243. doi: 10.1371/journal.pone.0064243. Print 2013.

Abstract

Dystrophic epidermolysis bullosa, a severely disabling hereditary skin fragility disorder, is caused by mutations in the gene coding for collagen VII, a specialized adhesion component of the dermal-epidermal junction zone. Both recessive and dominant forms are known; the latter account for about 40% of cases. Patients with dominant dystrophic epidermolysis bullosa exhibit a spectrum of symptoms ranging from mild localized to generalized skin manifestations. Individuals with the same mutation can display substantial phenotypic variance, emphasizing the role of modifying genes in this disorder. The etiology of dystrophic epidermolysis bullosa has been known for around two decades; however, important pathogenetic questions such as involvement of modifier genes remain unanswered and a causative therapy has yet to be developed. Much of the failure to make progress in these areas is due to the lack of suitable animal models that capture all aspects of this complex monogenetic disorder. Here, we report the first rat model of dominant dystrophic epidermolysis bullosa. Affected rats carry a spontaneous glycine to aspartic acid substitution, p.G1867D, within the main structural domain of collagen VII. This confers dominant-negative interference of protein folding and decreases the stability of mutant collagen VII molecules and their polymers, the anchoring fibrils. The phenotype comprises fragile and blister-prone skin, scarring and nail dystrophy. The model recapitulates all signs of the human disease with complete penetrance. Homozygous carriers of the mutation are more severely affected than heterozygous ones, demonstrating for the first time a gene-dosage effect of mutated alleles in dystrophic epidermolysis bullosa. This novel viable and workable animal model for dominant dystrophic epidermolysis bullosa will be valuable for addressing molecular disease mechanisms, effects of modifying genes, and development of novel molecular therapies for patients with dominantly transmitted skin disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution*
  • Animals
  • Base Sequence
  • Collagen Type VII / genetics*
  • Collagen Type VII / metabolism
  • DNA Mutational Analysis
  • Disease Models, Animal
  • Epidermolysis Bullosa Dystrophica / genetics*
  • Epidermolysis Bullosa Dystrophica / metabolism
  • Gene Dosage
  • Gene Expression
  • Genetic Association Studies
  • Humans
  • Molecular Sequence Data
  • Protein Stability
  • Rats
  • Skin / pathology

Substances

  • Collagen Type VII

Grants and funding

This work was supported in part by the Excellence Initiative of the German Federal and State Governments (Freiburg Institute for Advanced Studies, FRIAS, School of Life Sciences), by grant Nr. BR 1475/12-1 from the German Research Foundation (DFG), by grants from Debra International, and by the stem cell therapy for inherited skin fragility disorders grant from the Federal Ministry for Education and Research (BMBF 01GN0970). AN was supported by a grant from BMBF, under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.