MicroRNAs (miRs) are short, noncoding RNAs that function as posttranscriptional inhibitors of mRNA translation to protein. They are essential for normal development and homeostasis. Dysregulated expression patterns both cause and result from disease states. Generally studied as intracellular mediators, miRs can be isolated from body fluids and exhibit remarkable stability to degradation. These features, in combination with their tissue specificity, make miRs attractive candidates as blood-derived biomarkers for coronary artery disease (CAD), the most frequent cause of death worldwide. The use of miRs as biomarkers in both symptomatic and asymptomatic CAD and the influence of conventional cardiovascular risk factors and CAD treatment on their circulating levels are the topics of this review. To conclude, it highlights the remaining hurdles to tackle before this promising application of miRs can enter into routine clinical practice.