Marine teleost fishes drink environmental seawater to compensate for osmotic water loss, and the amount of water intake is precisely regulated to prevent dehydration or hypernatremia. Unlike terrestrial animals in which thirst motivates a series of drinking behaviors, aquatic fishes can drink environmental water by reflex swallowing without searching for water. Hormones are key effectors for the regulation of drinking. In particular, angiotensin II and atrial natriuretic peptide are likely candidates for physiological regulators because of their potent dipsogenic and antidipsogenic activities, respectively. In the eel, these hormones act on the area postrema in the medulla oblongata, a circumventricular structure without blood-brain barrier, which then regulates the activity of the glossopharyngeal-vagal motor complex. These motor neurons in the hindbrain innervate the upper esophageal sphincter muscle and other swallowing-related muscles in the pharynx and esophagus for regulation of drinking. Thus, the neural circuitry for drinking in fishes appears to be confined within the hindbrain. This simple mechanism is much different from that of terrestrial animals in which thirst sensation is induced through hormonal actions on the subfornical organ and organum vasculosum of the lamina terminalis that are located in the forebrain. It seems that the neural and hormonal mechanism that regulates drinking behavior has evolved from fishes depending on the availability of water in their natural habitats.
Keywords: Angiotensin II; Area postrema; Atrial natriuretic peptide; Swallowing; Upper esophageal sphincter.
Copyright © 2013 Elsevier Inc. All rights reserved.