Interleukin-23 (IL-23), a cytokine produced primarily by dendritic cells, is involved in host defense against gut pathogens and promotes innate immunity and inflammatory responses through the IL-23/interleukin-17 axis. We previously reported that extracts from edible mushrooms enhanced antimicrobial α-defensin production n HL60 cells. Because IL-23 is involved in defensin production, we hypothesized that edible mushrooms may modulate its secretion and gut inflammation. Eight-week-old C57BL/6 mice were fed the AIN76 diet or the same diet supplemented with 5% white button (WBM), portabella, or shiitake mushrooms. To assess in vivo and in vitro cytokine secretion, 7 to 8 mice per group received 3% dextran sodium sulfate (DSS) in drinking water during the last 5 days of the 6-week feeding period. To delineate the mechanisms by which mushrooms alter IL-23 secretion, J.744.1 cells were incubated with (100 μg/mL) WBM, portabella, and shiitake extracts without and with 100 μg/mL curdlan (a dectin-1 agonist) or 1 mg/mL laminarin (a dectin-1 antagonist). The dectin-1 receptor is a pattern-recognition receptor found in phagocytes, and its activation promotes antimicrobial innate immunity and inflammatory responses. In DSS-untreated mice, mushrooms significantly increased IL-23 plasma levels but decreased those of interleukin-6 (IL-6) (P < .05). In DSS-treated mice, mushroom-supplemented diets increased IL-6 and IL-23 levels (P < .05). Mushroom extracts potentiated curdlan-induced IL-23 secretion, and mushroom-induced IL-23 secretion was not blocked by laminarin in vitro, suggesting the involvement of both dectin-1-dependent and dectin-1-independent pathways. Although all mushrooms tended to increase IL-6 in the colon, only WBM and shiitake tended to increase IL-23 levels. These data suggest that edible mushrooms may enhance gut immunity through IL-23.
Published by Elsevier Inc.