Microscopic diagnosis of equine piroplasmoses, caused by Theileria equi and Babesia caballi, is hindered by low parasitaemia during the latent phase of the infections. However, this constraint can be overcome by the application of PCR followed by sequencing. Out of 288 animals examined, the piroplasmid DNA was detected in 78 (27·1%). Multiplex PCR indicated that T. equi (18·8%) was more prevalent than B. caballi (7·3%), while mixed infections were conspicuously absent. Sequences of 69 PCR amplicons obtained by the 'catch-all' PCR were in concordance with those amplified by the multiplex strategy. Computed minimal adequate model analyses for both equine piroplasmid species separately showed a significant effect of host species and age in the case of T. equi, while in the B. caballi infections only the correlation with host sex was significant. Phylogenetic analyses inferred the occurrence of three genotypes of T. equi and B. caballi. Moreover, a novel genotype C of B. caballi was identified. The dendrogram based on obtained sequences of T. equi revealed possible speciation events. The infections with T. equi and B. caballi are enzootic in all ecozones of Jordan and different genotypes circulate wherever dense horse population exists.