[Enhancement of tropane alkaloids production in transgenic hair roots of Atropa belladonna by overexpressing endogenous genes AbPMT and AbH6H]

Yao Xue Xue Bao. 2013 Feb;48(2):243-9.
[Article in Chinese]

Abstract

Atropa belladonna L. is the officially medicinal plant species and the main commercial source of scopolamine and hyoscyamine in China. In this study, we reported the simultaneous overexpression of two functional genes involved in biosynthesis of scopolamine, which respectively encoded the upstream key enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53) and the downstream key enzyme hyoscyamine 6beta-hydroxylase (H6H; EC 1.14.11.11) in transgenic hair root cultures of Atropa belladonna L. HPLC results suggested that four transgenic hair root lines produced higher content of scopolamine at different levels compared with nontransgenic hair root cultures. And scopolamine content increased to 8.2 fold in transgenic line PH2 compared with that of control line; and the other four transgenic lines showed an increase of scopolamine compared with the control. Two of the transgenic hair root lines produced higher levels of tropane alkaloids, and the content increased to 2.7 fold in transgenic line PH2 compared with the control. The gene expression profile indicated that both PMT and H6H expressed at a different levels in different transgenic hair root lines, which would be helpful for biosynthesis of scopolamine. Our studies suggested that overexpression of A. belladonna endogenous genes PMT and H6H could enhance tropane alkaloid biosynthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atropa belladonna* / enzymology
  • Atropa belladonna* / genetics
  • Gene Expression Regulation, Enzymologic
  • Gene Expression Regulation, Plant
  • Hyoscyamine / metabolism
  • Methyltransferases / genetics
  • Methyltransferases / metabolism*
  • Mixed Function Oxygenases / genetics
  • Mixed Function Oxygenases / metabolism*
  • Plant Roots / enzymology
  • Plant Roots / genetics
  • Plants, Genetically Modified / enzymology
  • Plants, Genetically Modified / genetics
  • Plants, Medicinal / enzymology
  • Plants, Medicinal / genetics
  • Scopolamine / metabolism*
  • Synthetic Biology*
  • Tropanes / metabolism*

Substances

  • Tropanes
  • Scopolamine
  • Mixed Function Oxygenases
  • hyoscyamine (6S)-dioxygenase
  • Methyltransferases
  • putrescine N-methyltransferase
  • Hyoscyamine