Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers

Proc Natl Acad Sci U S A. 2013 May 28;110(22):8918-23. doi: 10.1073/pnas.1222824110. Epub 2013 May 13.

Abstract

Antimicrobial peptides are postulated to disrupt microbial phospholipid membranes. The prevailing molecular model is based on the formation of stable or transient pores although the direct observation of the fundamental processes is lacking. By combining rational peptide design with topographical (atomic force microscopy) and chemical (nanoscale secondary ion mass spectrometry) imaging on the same samples, we show that pores formed by antimicrobial peptides in supported lipid bilayers are not necessarily limited to a particular diameter, nor they are transient, but can expand laterally at the nano-to-micrometer scale to the point of complete membrane disintegration. The results offer a mechanistic basis for membrane poration as a generic physicochemical process of cooperative and continuous peptide recruitment in the available phospholipid matrix.

Keywords: antibiotics; de novo protein design; innate host defense; nanometrology; nanoscopy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Antimicrobial Cationic Peptides / chemistry
  • Antimicrobial Cationic Peptides / genetics
  • Antimicrobial Cationic Peptides / metabolism*
  • Chromatography, High Pressure Liquid
  • Circular Dichroism
  • Lipid Bilayers / chemistry*
  • Magnetic Resonance Spectroscopy
  • Mass Spectrometry
  • Microscopy, Atomic Force
  • Molecular Dynamics Simulation
  • Molecular Sequence Data
  • Nanotechnology / methods*
  • Phospholipids / chemistry
  • Phospholipids / metabolism*
  • Protein Engineering
  • Spectrometry, Mass, Secondary Ion

Substances

  • Antimicrobial Cationic Peptides
  • Lipid Bilayers
  • Phospholipids