Background/aim: Since antigenic peptides of the cancer-associated antigens presented on human leukocyte antigen (HLA) molecules are recognized by specific cytotoxic T-lymphocytes, they have the potential to becoming effective peptide vaccines for cancer immunotherapy.
Materials and methods: Peptides binding to HLA-A*0201 and HLA-A*2402 obtained from human prostate cancer cells by acid-elution were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and source proteins of the peptides were determined based on the HLA-binding capacity listed on the Syfpeithi.
Results: We identified TKLSA possibly derived from absent in melanoma 1-like protein (AIM1L), and RLRYT from trans-membrane protein-191C (TMEM 191C) or c20orf201. Messenger RNAs encoding these proteins were expressed in various cancer cell types but none or very few in non-cancerous tissues except for testis, cerebellum and ovary.
Conclusion: HLA class I-binding peptides of unique cancer-associated proteins were identified by MS analysis, and might become a promising tool for the generation of novel cancer vaccines.
Keywords: HLA class-I; antigenic peptide; cancer associated antigen; mass spectrometric analysis; prostate cancer.