For vision-threatening retinitis pigmentosa and dry age-related macular degeneration, there are no United States Food and Drug Administration (FDA)-approved treatments. We identified, biosynthesized, purified, and characterized lens epithelium-derived growth factor fragment (LEDGF1-326) as a novel protein therapeutic. LEDGF1-326 was produced at about 20 mg/liter of culture when expressed in the Escherichia coli system, with about 95% purity and aggregate-free homogeneous population with a mean hydrodynamic diameter of 9 ± 1 nm. The free energy of unfolding of LEDGF1-326 was 3.3 ± 0.5 kcal mol(-1), and melting temperature was 44.8 ± 0.2 °C. LEDGF1-326 increased human retinal pigment epithelial cell viability from 48.3 ± 5.6 to 119.3 ± 21.1% in the presence of P23H mutant rhodopsin-mediated aggregation stress. LEDGF1-326 also increased retinal pigment epithelial cell FluoSphere uptake to 140 ± 10%. Eight weeks after single intravitreal injection in Royal College of Surgeons (RCS) rats, LEDGF1-326 increased the b-wave amplitude significantly from 9.4 ± 4.6 to 57.6 ± 8.8 μV for scotopic electroretinogram and from 10.9 ± 5.6 to 45.8 ± 15.2 μV for photopic electroretinogram. LEDGF1-326 significantly increased the retinal outer nuclear layer thickness from 6.34 ± 1.6 to 11.7 ± 0.7 μm. LEDGF1-326 is a potential new therapeutic agent for treating retinal degenerative diseases.
Keywords: Dry Age-related Macular Degeneration; Growth Factors; Lens Epithelium-derived Growth Factor; Protein Expression; Protein purification; Retinal Degeneration; Retinitis Pigmentosa; Therapeutic Protein; Transcription Factors.