Previous studies show that children who later progress to type 1 diabetes (T1D) have decreased preautoimmune concentrations of multiple phospholipids as compared with nonprogressors. It is still unclear whether these changes associate with development of β-cell autoimmunity or specifically with clinical T1D. Here, we studied umbilical cord serum lipidome in infants who later developed T1D (N = 33); infants who developed three or four (N = 31) islet autoantibodies, two (N = 31) islet autoantibodies, or one (N = 48) islet autoantibody during the follow-up; and controls (N = 143) matched for sex, HLA-DQB1 genotype, city of birth, and period of birth. The analyses of serum molecular lipids were performed using the established lipidomics platform based on ultra-performance liquid chromatography coupled to mass spectrometry. We found that T1D progressors are characterized by a distinct cord blood lipidomic profile that includes reduced major choline-containing phospholipids, including sphingomyelins and phosphatidylcholines. A molecular signature was developed comprising seven lipids that predicted high risk for progression to T1D with an odds ratio of 5.94 (95% CI, 1.07-17.50). Reduction in choline-containing phospholipids in cord blood therefore is specifically associated with progression to T1D but not with development of β-cell autoimmunity in general.