SET has multiple cell functions including nucleosome assembly, histone binding, transcription control, and cell apoptosis. In ovaries SET is predominantly expressed in theca cells and oocytes. In our study, SET overexpression in theca cells stimulated testosterone production whereas SET knockdown decreased testosterone production. Moreover, SET negatively regulated PP2A activity. Treatment with PP2A inhibitor okadaic acid (OA) led to increased testosterone synthesis, while treatment with PP2A activators resulted in the decreased testosterone synthesis. Furthermore, PP2A knockdown confirmed the key role of PP2A in the testosterone synthesis, and OA was able to block the AdH1-SiRNA/SET-mediated inhibition of testosterone production. The central role of PP2A in SET-mediated regulation of testosterone production was confirmed by the finding that SET promoted the lyase activity of P450c17 and that PP2A inhibited its lyase activity. Taken together, these results reveal a specific, SET-initiated, PP2A-mediated, pathway that leads to the increased lyase activity of P450c17 and testosterone biosynthesis.
Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.