We previously reported a double-stranded endonuclease from HeLa cells, endonuclease R (endo R), which specifically cleaves duplex DNA at sites rich in G.C base pairs. In this report we describe the purification of endo R to near homogeneity by conventional and affinity chromatography. The molecular mass of the active form of endo R is approximately 115-125 kDa. SDS-gel electrophoresis reveals a major protein species of 100 kDa. The enzyme requires Mg2+ as a cofactor and is equally active on closed circular and linear duplex DNA substrates that contain G-rich sequences. A 50% reduction in cleavage activity is observed with Ca2+ ions and no double-stranded cleavage occurs with Zn2+. Use of Mn2+ causes an altered specificity at low concentrations of enzyme or divalent metal ion and nonspecific degradation of the substrate at higher concentrations. Endo R is strongly inhibited by sodium or potassium chloride and exhibits a wide pH optimum of 6.0-9.0. The pI of the enzyme is between 6.5 and 7.0. A 2-fold stimulation is observed with the addition of dGTP or dATP but specific cleavage is inhibited by ATP at an equivalent concentration. Cleavage activity is competitively inhibited 10-fold more efficiently by single-stranded poly(dG)12 than by other DNA competitors. The ends of endo R cleavage products contain 5'-phosphate and 3'-hydroxyl groups, and a significant portion of these products were substrates for T4 DNA ligase. Endo R appears to be a previously uncharacterized mammalian endonuclease.