Identification of ethylene-regulated and ripening-related genes from banana (Musa acuminata Var. Harichaal) fruits using DDRT-PCR led to the isolation of differentially expressed partial cDNA of pectin methylesterase inhibitor (MaPMEI) gene. Its full-length cDNA sequence consisted of a 567 bp ORF, encoding a protein of 189 aa with deduced molecular mass 19.6 kDa. Expression pattern of MaPMEI gene revealed that upon ethylene treatment, this gene is up-regulated initially giving maximum expression in post-climacteric stage then decreases slightly in later stages of ripening. 1-MCP, a known ethylene perception inhibitor, inhibits both fruit ripening as well as the transcript level of this gene. Also, the transcripts of MaPMEI gene were not detected during the short time ethylene treatment suggesting this gene appears to be not directly induced by ethylene. Interestingly, MaPMEI gene showed fruit specific expression that indicates its possible role in the regulations of PMEs in fruits. In silico analysis revealed a predicted signal peptide sequence necessary for localization of MaPMEI in the cell wall. Furthermore, the four Cys residues involved in disulfide bridges are conserved in MaPMEI similar to other PMEIs and invertase inhibitors. Phylogenetic analysis further suggests that the MaPMEI identified in this study is more closely related to PMEIs than to invertase inhibitors.
Keywords: Banana; DDRT-PCR; Ethylene responsive expression; Fruit ripening; Pectin methylesterase inhibitor.