QC-Chain: fast and holistic quality control method for next-generation sequencing data

PLoS One. 2013;8(4):e60234. doi: 10.1371/journal.pone.0060234. Epub 2013 Apr 2.

Abstract

Next-generation sequencing (NGS) technologies have been widely used in life sciences. However, several kinds of sequencing artifacts, including low-quality reads and contaminating reads, were found to be quite common in raw sequencing data, which compromise downstream analysis. Therefore, quality control (QC) is essential for raw NGS data. However, although a few NGS data quality control tools are publicly available, there are two limitations: First, the processing speed could not cope with the rapid increase of large data volume. Second, with respect to removing the contaminating reads, none of them could identify contaminating sources de novo, and they rely heavily on prior information of the contaminating species, which is usually not available in advance. Here we report QC-Chain, a fast, accurate and holistic NGS data quality-control method. The tool synergeticly comprised of user-friendly tools for (1) quality assessment and trimming of raw reads using Parallel-QC, a fast read processing tool; (2) identification, quantification and filtration of unknown contamination to get high-quality clean reads. It was optimized based on parallel computation, so the processing speed is significantly higher than other QC methods. Experiments on simulated and real NGS data have shown that reads with low sequencing quality could be identified and filtered. Possible contaminating sources could be identified and quantified de novo, accurately and quickly. Comparison between raw reads and processed reads also showed that subsequent analyses (genome assembly, gene prediction, gene annotation, etc.) results based on processed reads improved significantly in completeness and accuracy. As regard to processing speed, QC-Chain achieves 7-8 time speed-up based on parallel computation as compared to traditional methods. Therefore, QC-Chain is a fast and useful quality control tool for read quality process and de novo contamination filtration of NGS reads, which could significantly facilitate downstream analysis. QC-Chain is publicly available at: http://www.computationalbioenergy.org/qc-chain.html.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Computational Biology / methods
  • Computational Biology / standards
  • Genomics / methods
  • Genomics / standards
  • High-Throughput Nucleotide Sequencing / standards*
  • Metagenomics / methods
  • Metagenomics / standards
  • Quality Control
  • Sequence Analysis, DNA / standards*

Grants and funding

This work is supported by Shandong Natural Science Foundation grant BS2009SW022, Chinese Academy of Sciences’ e-Science grant INFO-115-D01-Z006, Ministry of Science and Technology’s high-tech (863) grant 2009AA02Z310, Natural Science Foundation of China grant 61103167 and 31271410. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.