Trolox contributes to Nrf2-mediated protection of human and murine primary alveolar type II cells from injury by cigarette smoke

Cell Death Dis. 2013 Apr 4;4(4):e573. doi: 10.1038/cddis.2013.96.

Abstract

Cigarette smoke (CS) is a main risk factor for chronic obstructive pulmonary disease (COPD). Oxidative stress induced by CS causes DNA and lung damage. Oxidant/antioxidant imbalance occurs in the distal air spaces of smokers and in patients with COPD. We studied the effect of oxidative stress generated by CS both in vivo and in vitro on murine primary alveolar type II (ATII) cells isolated from nuclear erythroid 2-related factor-2 (Nrf2)(-/-) mice. We determined human primary ATII cell injury by CS in vitro and analyzed ATII cells isolated from smoker and non-smoker lung donors ex vivo. We also studied whether trolox (water-soluble derivative of vitamin E) could protect murine and human ATII cells against CS-induced DNA damage and/or decrease injury. We analyzed oxidative stress by 4-hydroxynonenal expression, reactive oxygen species (ROS) generation by Amplex Red Hydrogen Peroxide Assay, Nrf2, heme oxygenase 1, p53 and P53-binding protein 1 (53BP1) expression by immonoblotting, Nrf2 nuclear translocation, Nrf2 and p53 DNA-binding activities, apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and cytokine production by ELISA. We found that ATII cells isolated from Nrf2(-/-) mice are more susceptible to CS-induced oxidative DNA damage mediated by p53/53BP1 both in vivo and in vitro compared with wild-type mice. Therefore, Nrf2 activation is a key factor to protect ATII cells against injury by CS. Moreover, trolox abolished human ATII cell injury and decreased DNA damage induced by CS in vitro. Furthermore, we found higher inflammation and p53 mRNA expression by RT-PCR in ATII cells isolated from smoker lung donors in comparison with non-smokers ex vivo. Our results indicate that the Nrf2 and p53 cross talk in ATII cells affect the susceptibility of these cells to injury by CS. Trolox can protect against oxidative stress, genotoxicity and inflammation induced by CS through ROS scavenging mechanism, and serve as a potential antioxidant prevention strategy against oxidative injury of ATII cells in CS-related lung diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aldehydes / metabolism
  • Alveolar Epithelial Cells / cytology
  • Alveolar Epithelial Cells / drug effects*
  • Alveolar Epithelial Cells / metabolism
  • Animals
  • Antioxidants / pharmacology*
  • Chromans / pharmacology*
  • Gene Expression Regulation / drug effects
  • Heme Oxygenase-1 / genetics
  • Heme Oxygenase-1 / metabolism
  • Humans
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Mice
  • Mice, Knockout
  • NF-E2-Related Factor 2 / agonists*
  • NF-E2-Related Factor 2 / genetics
  • NF-E2-Related Factor 2 / metabolism
  • Nicotiana / toxicity*
  • Oxidative Stress
  • Pulmonary Alveoli / cytology
  • Pulmonary Alveoli / drug effects*
  • Pulmonary Alveoli / metabolism
  • Reactive Oxygen Species / antagonists & inhibitors
  • Reactive Oxygen Species / metabolism
  • Signal Transduction / drug effects
  • Smoke / adverse effects
  • Smoking / adverse effects
  • Tumor Suppressor Protein p53 / agonists*
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism
  • Tumor Suppressor p53-Binding Protein 1

Substances

  • Aldehydes
  • Antioxidants
  • Chromans
  • Intracellular Signaling Peptides and Proteins
  • NF-E2-Related Factor 2
  • Nfe2l2 protein, mouse
  • Reactive Oxygen Species
  • Smoke
  • TP53BP1 protein, human
  • Tumor Suppressor Protein p53
  • Tumor Suppressor p53-Binding Protein 1
  • Heme Oxygenase-1
  • 4-hydroxy-2-nonenal
  • 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid