Current treatment strategies in patients with newly-diagnosed glioblastoma include surgical resection with post-operative radiotherapy and concomitant/adjuvant temozolomide (the "Stupp protocol") or resection with implantation of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) wafers in the surgical cavity followed by radiotherapy. In clinical practice, patients with malignant glioma treated with BCNU wafer often also receive adjuvant temozolomide. However, current treatment guidelines are unclear on whether and how these treatment practices can be combined, and no prospective phase 3 study has assessed the safety and efficacy of combining BCNU wafers with temozolomide and radiation in high-grade malignant glioma. The rationale for multimodal therapy comprising surgical resection with adjunct local BCNU wafers followed by radiotherapy and temozolomide is based on complementary and synergistic mechanisms of action between BCNU and temozolomide in preclinical studies; a shared primary resistance pathway, methylguanine-DNA methyltransferase (MGMT); and the opportunity to overcome resistance through MGMT depletion to boost cytotoxic activity. A comprehensive review of the literature identified 19 retrospective and prospective studies investigating the use of this multimodal strategy. Median overall survival in 14 studies of newly-diagnosed patients suggested a modest improvement versus resection followed by Stupp protocol or resection with BCNU wafers, with an acceptable and manageable safety profile.