Hydrogen-bonding and the dissolution mechanism of uracil in an acetate ionic liquid: new insights from NMR spectroscopy and quantum chemical calculations

J Phys Chem B. 2013 Apr 18;117(15):4109-20. doi: 10.1021/jp400749j. Epub 2013 Apr 4.

Abstract

The dissolution of uracil-a pyrimidine nucleic acid base-in the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][CH3COO]) has been investigated by methods of (1)H and (13)C NMR spectroscopy, (1)H-(1)H NOESY NMR spectroscopy, and quantum chemical calculations. The uracil-[C2mim][CH3COO] interactions that define the dissolution mechanism comprise the hydrogen bonds between the oxygen atoms of the acetate anion and the hydrogen atoms of the N1-H and N3-H groups of uracil and also the hydrogen bonds between the most acidic aromatic hydrogen atom (H2) of the imidazolium cation and the oxygen atoms of the carbonyl groups of uracil. The bifunctional solvation nature of the ionic liquid can be inferred from the presence of interactions between both ions of the ionic liquid and the uracil molecule. The location of such interaction sites was revealed using NMR data ((1)H and (13)C chemical shifts both in the IL and in the uracil molecule), complemented by DFT calculations. NOESY experiments provided additional evidence concerning the cation-uracil interactions.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetic Acid / chemistry*
  • Hydrogen Bonding
  • Ionic Liquids / chemistry*
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Molecular Structure
  • Quantum Theory*
  • Solvents / chemistry
  • Uracil / chemistry*

Substances

  • Ionic Liquids
  • Solvents
  • Uracil
  • Acetic Acid