pH-Based Regulation of Hydrogel Mechanical Properties Through Mussel-Inspired Chemistry and Processing

Adv Funct Mater. 2013 Mar 6;23(9):1111-1119. doi: 10.1002/adfm.201201922. Epub 2012 Oct 2.

Abstract

The mechanical holdfast of the mussel, the byssus, is processed at acidic pH yet functions at alkaline pH. Byssi are enriched in Fe3+ and catechol-containing proteins, species with chemical interactions that vary widely over the pH range of byssal processing. Currently, the link between pH, Fe3+-catechol reactions, and mechanical function are poorly understood. Herein, we describe how pH influences the mechanical performance of materials formed by reacting synthetic catechol polymers with Fe3+. Processing Fe3+-catechol polymer materials through a mussel-mimetic acidic-to-alkaline pH change leads to mechanically tough materials based on a covalent network fortified by sacrificial Fe3+-catechol coordination bonds. Our findings offer the first direct evidence of Fe3+-induced covalent cross-linking of catechol polymers, reveal additional insight into the pH dependence and mechanical role of Fe3+- catechol interactions in mussel byssi, and illustrate the wide range of physical properties accessible in synthetic materials through mimicry of mussel protein chemistry and processing.

Keywords: Biomimetics; Hydrogels; Polymeric Materials; Structure-Property Relationships.