This study describes a facile breath-figure method for the preparation of honeycomb-like porous TiO2 films with an organometallic small-molecule precursor. Multiple characterization techniques have been used to investigate the porous films and a mechanism for the formation process of porous TiO2 films through the breath-figure method is proposed. The pore size of the TiO2 films could be modulated by varying the experimental parameters, such as the concentration of titanium n-butoxide (TBT) solution, the content of cosolvent, and the air flow rate. In vitro cell-culture experiments indicate that NIH 3T3 fibroblast cells seeded on the honeycomb-like porous TiO2 films show good adhesion, spreading, and proliferation behaviors, which suggests that honeycomb-like porous TiO2 films are an attractive biomaterial for surface modification of titanium and its alloys implants in tissue engineering to enhance their biocompatibility and bioactivity.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.