Many pathological processes cause marked changes in the mechanical properties of tissue. MR elastography (MRE) is a noninvasive MRI based technique for quantitatively assessing the mechanical properties of tissues in vivo. MRE is performed by using a vibration source to generate low frequency mechanical waves in tissue, imaging the propagating waves using a phase contrast MRI technique, and then processing the wave information to generate quantitative images showing mechanical properties such as tissue stiffness. Since its first description in 1995, published studies have explored many potential clinical applications including brain, thyroid, lung, heart, breast, and skeletal muscle imaging. However, the best-documented application to emerge has been the use of MRE to assess liver disease. Multiple studies have demonstrated that there is a strong correlation between MRE-measured hepatic stiffness and the stage of fibrosis at histology. The emerging literature indicates that MRE can serve as a safer, less expensive, and potentially more accurate alternative to invasive liver biopsy which is currently the gold standard for diagnosis and staging of liver fibrosis. This review describes the basic principles, technique of performing a liver MRE, analysis and calculation of stiffness, clinical applications, limitations, and potential future applications.
Copyright © 2012 Wiley Periodicals, Inc.