Objective: Short stature caused by biologically inactive GH is clinically characterized by lack of GH action despite normal-high secretion of GH, pathologically low IGF1 concentrations and marked catch-up growth on GH replacement therapy.
Design and methods: Adopted siblings (girl and a boy) of unknown family history were referred for assessment of short stature (-4.5 and -5.6 SDS) at the age of 10 and 8.1 years respectively. They had delayed bone ages (6.8 and 4.5 years), normal GH peaks at stimulation tests, and severely reduced IGF1 concentrations (-3.5 and -4.0 SDS). Genetic analysis of the GH1 gene showed a heterozygous P59S mutation at position involved in binding to GH receptor (GHR).
Results: Isoelectric focusing analysis of secreted GH in patient serum revealed the presence of higher GH-P59S peak compared with that of wt-GH. Furthermore, computational simulation of GH-P59S binding to GHR suggested problems in correct binding of the mutant to the GHR. In vitro GHR binding studies revealed reduced binding affinity of GH-P59S for GHR (IC₅₀, 30 ng/ml) when compared with the wt-GH (IC₅₀, 11.8 ng/ml) while a significantly decreased ability of the mutant to activate the Jak2/Stat5 signaling pathway was observed at physiological concentrations of 25-100 ng/ml.
Conclusions: The clinical and biochemical data of our patients support the diagnosis of partial bioinactive GH syndrome. The higher amount of GH-P59S secreted in their circulation combined with its impact on the wt-GH function on GHR binding and signaling may alter GHR responsiveness to wt-GH and could ultimately explain severe short stature found in our patients.