Effects of carbon ion beam irradiation on lung injury and pulmonary fibrosis in mice

Exp Ther Med. 2013 Mar;5(3):771-776. doi: 10.3892/etm.2013.881. Epub 2013 Jan 4.

Abstract

Radiation-induced lung injury is a well-described complication of nuclear accidents, marrow-transplant pretreatment and thoracic radiotherapy. The mechanism is complex and no special therapy for it is available at present. To study radiation pulmonary injury following heavy ion radiotherapy for thoracic tumors, Kunming mice were randomly divided into 4 groups: normal control and 2, 4 and 6 Gy irradiation groups which underwent whole-body exposure to 235 MeV/u (12)C(6+) administered at the Heavy Ion Research Facility in Lanzhou (HIRFL). The pathological changes were observed by hematoxylin and eosin staining and the hydroxyproline (HP) content was assessed by spectrophotometry at months 1, 2, 3, 4, 5 and 6 after radiation exposure. In addition, the expression of tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β in the lung tissues was measured. The results showed that, compared with the control group, the lung tissue HP content was increased following irradiation but did not statistically significantly change after 4 months in the 4- and 6-Gy-treated groups. However, in the 2-Gy-treated group, the HP content was markedly increased between months 1 and 4 and decreased after month 4. The extent of the lung injury was significantly increased by the higher radiation dosages but was relieved in the 2 Gy group as the time since irradiation increased. The results also revealed that the levels of TNF-α were upregulated and reached a maximum at month 2, but decreased noticeably 2 months later in the experimental groups. The expression of TGF-β increased markedly in month 4 and was altered little in the 4- and 6-Gy-treated groups but decreased sharply in the 2 Gy irradiation group after month 4. These findings suggest that heavy ion radiotherapy for chest tumors causes lung injury to a certain extent, while there is likely to be little injury to lungs treated with <2 Gy, which provides scientific evidence for the use of heavy ion therapy for thoracic tumors.

Keywords: carbon ion beam; irradiation; lung injury; mice; pulmonary fibrosis.