Aim: The authors studied the bioimaging and delivery of drug-entrapped, nanostructured lipid carriers with quantum dots (QDs), called QDNLCs, for integrating imaging and therapy.
Materials & methods: Nanostructured lipid carriers consisting of QDs, including lipophilic QDs, carboxyl-function QDs or PEG QDs were prepared. Application of the nanocarriers was evaluated by cytotoxicity, cell migration, cellular uptake, in vivo real-time tumor monitoring and drug accumulation in tumors.
Results: All QDNLCs exhibited a size of 245 nm with camptothecin encapsulation of >99%. Cytotoxicity of the nanoparticles against melanoma cells was superior to that of free camptothecin. Carboxylic acid-conjugated QDNLCs (C-QDNLCs) showed the highest cell internalization and in vivo fluorescence labeling compared with the other carriers. Real-time bioimaging demonstrated that C-QDNLCs maintained signaling in tumors for at least 24 h. The camptothecin accumulation in melanomas increased by 6.4-fold after incorporation into C-QDNLCs.
Conclusion: For the first time, nanostructured lipid carriers were coordinated with QDs and an anticancer drug to provide efficient tumor imaging and drug delivery. Original submitted 1 May 2012; Revised submitted 30 August 2012; Published online 5 February 2013.