Background: Many meta-analyses have shown reductions in infection rates and mortality associated with the use of selective digestive decontamination (SDD) or selective oropharyngeal decontamination (SOD) in intensive care units (ICUs). These interventions have not been widely implemented because of concerns that their use could lead to the development of antimicrobial resistance in pathogens. We aimed to assess the effect of SDD and SOD on antimicrobial resistance rates in patients in ICUs.
Methods: We did a systematic review of the effect of SDD and SOD on the rates of colonisation or infection with antimicrobial-resistant pathogens in patients who were critically ill. We searched for studies using Medline, Embase, and Cochrane databases, with no limits by language, date of publication, study design, or study quality. We included all studies of selective decontamination that involved prophylactic application of topical non-absorbable antimicrobials to the stomach or oropharynx of patients in ICUs, with or without additional systemic antimicrobials. We excluded studies of interventions that used only antiseptic or biocide agents such as chlorhexidine, unless antimicrobials were also included in the regimen. We used the Mantel-Haenszel model with random effects to calculate pooled odds ratios.
Findings: We analysed 64 unique studies of SDD and SOD in ICUs, of which 47 were randomised controlled trials and 35 included data for the detection of antimicrobial resistance. When comparing data for patients in intervention groups (those who received SDD or SOD) versus data for those in control groups (who received no intervention), we identified no difference in the prevalence of colonisation or infection with Gram-positive antimicrobial-resistant pathogens of interest, including meticillin-resistant Staphylococcus aureus (odds ratio 1·46, 95% CI 0·90-2·37) and vancomycin-resistant enterococci (0·63, 0·39-1·02). Among Gram-negative bacilli, we detected no difference in aminoglycoside-resistance (0·73, 0·51-1·05) or fluoroquinolone-resistance (0·52, 0·16-1·68), but we did detect a reduction in polymyxin-resistant Gram-negative bacilli (0·58, 0·46-0·72) and third-generation cephalosporin-resistant Gram-negative bacilli (0·33, 0·20-0·52) in recipients of selective decontamination compared with those who received no intervention.
Interpretation: We detected no relation between the use of SDD or SOD and the development of antimicrobial-resistance in pathogens in patients in the ICU, suggesting that the perceived risk of long-term harm related to selective decontamination cannot be justified by available data. However, our study indicates that the effect of decontamination on ICU-level antimicrobial resistance rates is understudied. We recommend that future research includes a non-crossover, cluster randomised controlled trial to assess long-term ICU-level changes in resistance rates.
Funding: None.
Copyright © 2013 Elsevier Ltd. All rights reserved.