The purpose of this study was to assess the effects of a modified implant abutment design on peri-implant soft and hard tissues in dogs. Three months after extraction of mandibular premolar teeth, 3 dental implants were placed in each side of the jaw using a 1-stage approach. Implants on one side of the mandible received standard abutments (control), and implants on the contralateral side received modified, patented, grooved abutments (test). Two months after implant placement, animals were euthanized and specimens were prepared for histologic and histomorphometric assessment. The linear distance (in micrometers) was measured from the implant shoulder (IS) to the following landmarks: gingival margin (GM; distance IS-GM), most apical position of the junctional epithelium (JE; distance IS-JE), and bone crest (BC; distance IS-BC). Percent of bone-to-implant contact was also measured. Histologic assessment revealed that all implants were osseointegrated and that interimplant gingival fibers between test abutments appeared to be more numerous and organized than control abutments. The IS-GM and IS-JE distances in test implants were greater than the corresponding distances in control implants (P = .024 and P = .015, respectively), whereas crestal bone loss (IS-BC) was greater for control implants than test implants (P = .037). There were no differences between control and test implants in bone-to-implant contact (P = .69), which averaged close to 50%. These results suggest that the modified groove design incorporated in standard abutments confers both soft and hard tissue benefits.
Keywords: crestal bone; healing abutment; light microscopy; nonsubmerged healing; peri-implant soft tissues.