Development of inverted organic solar cells with TiO₂ interface layer by using low-temperature atomic layer deposition

ACS Appl Mater Interfaces. 2013 Feb;5(3):713-8. doi: 10.1021/am302252p. Epub 2013 Feb 4.

Abstract

Organic solar cells (OSCs) with inverted structure have attracted much attention in recent years because of their improved device air stability due to the use of stable materials for electrodes and interface layers. In this work, TiO(2) films, fabricated using low temperature (e.g., 130-170 °C) atomic layer deposition (ALD) on ITO substrates, are used as electron selective interface layers to investigate inverted OSCs. It is found that though the as-deposited TiO(2) films are high resistive due to the presence of oxygen defects, the defects can be significantly reduced by light soaking. PV cells with 15-nm-thick amorphous-TiO(2) layers fabricated at low temperature show better performance than those with poly crystal TiO(2) with same thickness deposited at 250 °C. The low temperature ALD-grown TiO(2) films are dense, stable and robust with capability of conformal coating on nanostructural surfaces, showing a promising interface layer for achieving air-stable plastic OSCs with roll-to-roll mass production potential.

Publication types

  • Research Support, Non-U.S. Gov't