Long-term potentiation (LTP) can be induced by electrical stimulation and gives rise to an increase in synaptic strength at the first relay. This phenomenon has been associated with learning and memory and also could be the origin of several pathological states elicited by an initial strong painful stimulus, such as some forms of neuropathic pain. We used high-frequency electrical stimulation of the sciatic nerve in anesthetized rats to produce spinal LTP. To evaluate the effect of spinal LTP on the activity of neurons in the posterior triangular nucleus of the thalamus (PoT), we applied an electrical stimulation (40 stimuli; 1ms; 0.5Hz; 1.5mA) to cutaneous tissues at 10-min intervals during at least 3h. In the majority of cases, PoT cells did not respond to cutaneous stimulation before LTP, but 50min after LTP induction PoT cells progressively began responding to the cutaneous stimulation. Furthermore, after 3h of LTP induction, PoT neurons could respond to cutaneous stimulation applied to different paws. Interestingly, the conduction velocities for the receptive field responses from the paw to the PoT cells were compatible with those of Aδ-fibers. Since PoT cells project to the insular cortex, the progressive increase in PoT activity and also the progressive unmasking of somatic receptive fields in response to LTP, place these cells in a key position to detect pain stimuli following central sensitization.
Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.