Growth differentiation factor-15 deficiency inhibits atherosclerosis progression by regulating interleukin-6-dependent inflammatory response to vascular injury

J Am Heart Assoc. 2012 Dec;1(6):e002550. doi: 10.1161/JAHA.112.002550. Epub 2012 Dec 19.

Abstract

Background: Growth differentiation factor (GDF)-15 is a distant and divergent member of the transforming growth factor-β superfamily (TGF-β) . There is growing evidence indicating the involvement of GDF-15 in various pathologies. Expression of GDF-15 is induced under conditions of inflammation and increased GDF-15 serum levels are suggested as a risk factor for cardiovascular diseases.

Methods and results: We show here that GDF-15 and proinflammatory cytokine interleukin (IL)-6 levels are highly increased (5-fold) in cultured oxidized low-density lipoproteins-stimulated peritoneal macrophages derived from GDF-15(+/+)/apolipoprotein (apo) E(-/-), mice. Notably, IL-6 induction on oxidized low-density lipoproteins stimulation is completely abolished in the absence of GDF-15. Consistent with our in vitro data GDF-15 mRNA expression and protein levels are upregulated (2.5- to 6-fold) in the atherosclerotic vessel wall of GDF-15(+/+)/apoE(-/-) mice after a cholesterol-enriched diet. GDF-15 deficiency inhibits lumen stenosis (52%) and (18)FDG uptake (34%) in the aortic arch despite increased serum triglyceride/cholesterol levels and elevated body weight. Immunohistomorphometric investigations of atherosclerotic lesions reveal a decreased percentage of inflammatory CD11b(+) (57%) or IL-6(+), leukocytes, and apoptotic cells (74%) after 20 weeks. However, the total number of macrophages and cell density in atherosclerotic lesions of the innominate artery are increased in GDF-15(-/-)/apoE(-/-) mice.

Conclusions: Our data suggest that GDF-15 is involved in orchestrating atherosclerotic lesion progression by regulating apoptotic cell death and IL-6-dependent inflammatory responses to vascular injury.

Keywords: GDF‐15; atherosclerosis; inflammation; interleukins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta, Thoracic / pathology
  • Atherosclerosis / metabolism
  • Atherosclerosis / physiopathology*
  • Body Weight
  • Brachiocephalic Trunk / pathology
  • Cholesterol / blood
  • Disease Progression*
  • Growth Differentiation Factor 15 / genetics
  • Growth Differentiation Factor 15 / metabolism
  • Growth Differentiation Factor 15 / physiology*
  • Inflammation / physiopathology*
  • Interleukin-6 / physiology*
  • Mice
  • Mice, Knockout
  • Positron-Emission Tomography
  • RNA, Messenger / metabolism
  • Real-Time Polymerase Chain Reaction
  • Triglycerides / blood
  • Up-Regulation

Substances

  • Growth Differentiation Factor 15
  • Interleukin-6
  • RNA, Messenger
  • Triglycerides
  • Cholesterol