Methane monooxygenase catalyzed oxygenation of 1,1-dimethylcyclopropane. Evidence for radical and carbocationic intermediates

Biochemistry. 1990 Feb 20;29(7):1696-700. doi: 10.1021/bi00459a005.

Abstract

Methane monooxygenase catalyzes the oxygenation of 1,1-dimethylcyclopropane in the presence of O2 and NADH to (1-methylcyclopropyl)methanol (81%), 3-methyl-3-buten-1-ol (6%), and 1-methyl-cyclobutanol (13%). Oxygenation by 18O2 using the purified enzyme proceeds with incorporation of 18O into the products. Inasmuch as methane monooxygenase catalyzes the insertion of O from O2 into a carbon-hydrogen bond of alkanes, (1-methylcyclopropyl)methanol appears to be a conventional oxygenation product. 3-Methyl-3-buten-1-ol is a rearrangement product that can be rationalized on the basis that enzymatic oxygenation of 1,1-dimethylcyclopropane proceeds via the (1-methylcyclopropyl)carbinyl radical, which is expected to undergo rearrangement with ring opening to the homoallylic 3-methyl-3-buten-1-yl radical in competition with conventional oxygenation. Oxygenation of the latter radical gives 3-methyl-3-buten-1-ol. 1-Methylcyclobutanol is a ring-expansion product, whose formation is best explained on the basis that the 1-methylcyclobutyl tertiary carbocation is an oxygenation intermediate. This cation would result from rearrangements of carbocations derived by one-electron oxidation of either radical intermediate. The fact that both 3-methyl-3-buten-1-ol and 1-methylcyclobutanol are produced suggests that the oxygenation mechanism involves both radical and carbocationic intermediates. Radicals and carbocations can both be intermediates if they are connected by an electron-transfer step. A reasonable reaction sequence is one in which the cofactor (mu-oxo)diiron reacts with O2 and two electrons to generate a hydrogen atom abstracting species and an oxidizing agent. The hydrogen-abstracting species might be the enzymic radical or another species generated by the iron complex and O2.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cyclopropanes / metabolism*
  • Euryarchaeota / enzymology*
  • Kinetics
  • Oxidation-Reduction
  • Oxygenases / metabolism*

Substances

  • Cyclopropanes
  • 1,1-dimethylcyclopropane
  • Oxygenases
  • methane monooxygenase