The binary alloy system Si(x)Ge(1-x) provides a continuous series of materials with gradually varying properties. In this paper, we report on a fundamental basis a method to make large-area macroporous Si(x)Ge(1-x) films with variable Ge content by electrodeposition in an ionic liquid, with SiCl(4) and GeCl(4) as precursors. The chemical composition of the products can be modified by changing the molar ratio of the precursors. Periodical macroporous Si(x)Ge(1-x) was made by a multilayer polystyrene (PS) template assembled as face-centered cubic lattice. Two-dimensional (2-D) Si(x)Ge(1-x) bowl-like and fishing-net structures can be obtained by applying different deposition temperatures. The results highlight the potential applications, including photonic bandgap and battery materials, as well as ultra-thin gratings, due to the effect of modification of light and improved tunability of composition, although Si(x)Ge(1-x) made by our method is sensitive to oxidation by air.