Optical computed tomography utilizing a rotating mirror and Fresnel lenses: operating principles and preliminary results

Phys Med Biol. 2013 Feb 7;58(3):479-95. doi: 10.1088/0031-9155/58/3/479. Epub 2013 Jan 10.

Abstract

The performance of a fast optical computed tomography (CT) scanner based on a point laser source, a small area photodiode detector, and two optical-grade Fresnel lenses is evaluated. The OCTOPUS™-10× optical CT scanner (MGS Research Inc., Madison, CT) is an upgrade of the OCTOPUS™ research scanner with improved design for faster motion of the laser beam and faster data acquisition process. The motion of the laser beam in the new configuration is driven by the rotational motion of a scanning mirror. The center of the scanning mirror and the center of the photodiode detector are adjusted to be on the focal points of two coaxial Fresnel lenses. A glass water tank is placed between the two Fresnel lenses to house gel phantoms and matching liquids. The laser beam scans over the water tank in parallel beam geometry for projection data as the scanning mirror rotates at a frequency faster than 0.1 s per circle. Signal sampling is performed independently of the motion of the scanning mirror, to reduce the processing time for the synchronization of the stepper motors and the data acquisition board. An in-house developed reference image normalization mechanism is added to the image reconstruction program to correct the non-uniform light transmitting property of the Fresnel lenses. Technical issues with regard to the new design of the scanner are addressed, including projection data extraction from raw data samples, non-uniform pixel averaging and reference image normalization. To evaluate the dosimetric accuracy of the scanner, the reconstructed images from a 16 MeV, 6 cm × 6 cm electron field irradiation were compared with those from the Eclipse treatment planning system (Varian Corporation, Palo Alto, CA). The spatial resolution of the scanner is demonstrated to be of sub-millimeter accuracy. The effectiveness of the reference normalization method for correcting the non-uniform light transmitting property of the Fresnel lenses is analyzed. A sub-millimeter accuracy of the phantom positioning between the reference scan and the actual scan is demonstrated to be essential. The fast scanner is shown to be able to scan gel phantoms with a wider field of view (5 mm from the edge of the scanned dosimeters) and at a speed 10 to 20 times faster than the OCTOPUS™ scanner. A large uncertainty of 5% (defined as the ratio of the standard deviation to the mean) is typically observed in the reconstructed images, owing to the inaccuracy in the phantom positioning process. Methods for further improvement of the accuracy of the in-house modified OCTOPUS™-10× scanner are discussed.

MeSH terms

  • Electrons
  • Lenses*
  • Mechanical Phenomena
  • Rotation*
  • Subtraction Technique
  • Tomography, Optical / instrumentation*