Coordinated reset neuromodulation consists of the application of consecutive brief high-frequency pulse trains through the different contacts of the stimulation electrode. In theoretical studies, by achieving unlearning of abnormal connectivity between neurons, coordinated reset neuromodulation reduces pathological synchronization, a hallmark feature of Parkinson's disease pathophysiology. Here we show that coordinated reset neuromodulation of the subthalamic nucleus has both acute and sustained long-lasting aftereffects on motor function in parkinsonian nonhuman primates. Long-lasting aftereffects were not observed with classical deep brain stimulation. These observations encourage further development of coordinated reset neuromodulation for treating motor symptoms in Parkinson disease patients.
Copyright © 2012 American Neurological Association.