Gene sets for utilization of primary and secondary nutrition supplies in the distal gut of endangered Iberian lynx

PLoS One. 2012;7(12):e51521. doi: 10.1371/journal.pone.0051521. Epub 2012 Dec 12.

Abstract

Recent studies have indicated the existence of an extensive trans-genomic trans-mural co-metabolism between gut microbes and animal hosts that is diet-, host phylogeny- and provenance-influenced. Here, we analyzed the biodiversity at the level of small subunit rRNA gene sequence and the metabolic composition of 18 Mbp of consensus metagenome sequences and activity characteristics of bacterial intra-cellular extracts, in wild Iberian lynx (Lynx pardinus) fecal samples. Bacterial signatures (14.43% of all of the Firmicutes reads and 6.36% of total reads) related to the uncultured anaerobic commensals Anaeroplasma spp., which are typically found in ovine and bovine rumen, were first identified. The lynx gut was further characterized by an over-representation of 'presumptive' aquaporin aqpZ genes and genes encoding 'active' lysosomal-like digestive enzymes that are possibly needed to acquire glycerol, sugars and amino acids from glycoproteins, glyco(amino)lipids, glyco(amino)glycans and nucleoside diphosphate sugars. Lynx gut was highly enriched (28% of the total glycosidases) in genes encoding α-amylase and related enzymes, although it exhibited low rate of enzymatic activity indicative of starch degradation. The preponderance of β-xylosidase activity in protein extracts further suggests lynx gut microbes being most active for the metabolism of β-xylose containing plant N-glycans, although β-xylosidases sequences constituted only 1.5% of total glycosidases. These collective and unique bacterial, genetic and enzymatic activity signatures suggest that the wild lynx gut microbiota not only harbors gene sets underpinning sugar uptake from primary animal tissues (with the monotypic dietary profile of the wild lynx consisting of 80-100% wild rabbits) but also for the hydrolysis of prey-derived plant biomass. Although, the present investigation corresponds to a single sample and some of the statements should be considered qualitative, the data most likely suggests a tighter, more coordinated and complex evolutionary and nutritional ecology scenario of carnivore gut microbial communities than has been previously assumed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Wild
  • Bacteria / genetics
  • Endangered Species*
  • Feeding Behavior / physiology*
  • Gastrointestinal Tract / microbiology*
  • Genes, Bacterial / genetics*
  • Genetic Variation
  • Lynx / microbiology*
  • Spain

Grants and funding

The authors greatly acknowledge Ministerio de Agricultura, Alimentación y Medio Ambiente (former Ministerio de Medio Ambiente, Medio Rural y Marino), and the LIFE-Nature project “Conservación y Reintroducción del Lince Ibérico (Lynx pardinus) en Andalucía” for their support and collaboration. This research was supported by the Spanish CSD2007-00005 and by European Regional Development Fund (ERDF) funds. The Regional Government of Environment of the Junta de Andalucía provided permission for the collection of samples (permit SGYB/FOA/AFR/CFS) during routine conservation management works. SAH, PNG and CJN acknowledge the support of Bangor-Aberystwyth Strategic Alliance partnership in frames of Centre for Integrated Research in the Rural Environment (CIRRE) and Biosciences, Environment and Agriculture Alliance (BEAA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.