Objective: The ability to predict responses to chemotherapy for serous epithelial ovarian cancer (EOC) would be valuable since intrinsically chemoresistant EOC patients (persistent or recurrent disease within 6 months) gain little benefit from standard chemotherapy. The aim of this study was to screen and identify distinctive biomarkers in ascites of serous EOC associated with intrinsic chemoresistance.
Methods: Protein samples from ascites of 12 chemosensitive and 7 intrinsically chemoresistant serous EOC patients were analyzed using two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS). Furthermore, the identified proteins were validated by ELISA in ascites samples from 19 chemosensitive and 9 intrinsically chemoresistant EOC patients.
Results: The number of spots detected in all 2-D DIGE gels ranged from 1523-1711 using DeCyder software analysis. Thirty-four spots were differentially expressed based on the criteria of an average ratio of more than 1.5 and a student t-test P value <0.05. After MALDI-TOF/TOF MS analysis, 11 differentially expressed proteins, including 3 up-regulated and 8 down-regulated proteins, in ascites of chemoresistant tumors were successfully identified. Of the four selected proteins (ceruloplasmin, apoliprotein A-IV, transthyretin and haptoglobin) in ascites tested by ELISA, only ceruloplasmin was present at significantly different levels between the chemoresistant and chemosensitive ascites samples with average concentrations of 192.2 µg/ml and 157.5 µg/ml, respectively (P = 0.001).
Conclusion: The significantly up-regulated level of ceruloplasmin in the ascites fluid of intrinsic chemoresistant serous EOC patients suggests its potential as a prognostic biomarker for responses to chemotherapy. This finding prompts further investigation with a larger study in order to validate the clinical utility of ceruloplasmin.