Consensus classification of human leukocyte antigen class II proteins

Immunogenetics. 2013 Feb;65(2):97-105. doi: 10.1007/s00251-012-0665-6. Epub 2012 Nov 16.

Abstract

Class II human leukocyte antigens (HLA II) are proteins involved in the human immunological adaptive response by binding and exposing some pre-processed, non-self peptides in the extracellular domain in order to make them recognizable by the CD4+ T lymphocytes. However, the understanding of HLA-peptide binding interaction is a crucial step for designing a peptide-based vaccine because the high rate of polymorphisms in HLA class II molecules creates a big challenge, even though the HLA II proteins can be grouped into supertypes, where members of different class bind a similar pool of peptides. Hence, first we performed the supertype classification of 27 HLA II proteins using their binding affinities and structural-based linear motifs to create a stable group of supertypes. For this purpose, a well-known clustering method was used, and then, a consensus was built to find the stable groups and to show the functional and structural correlation of HLA II proteins. Thus, the overlap of the binding events was measured, confirming a large promiscuity within the HLA II-peptide interactions. Moreover, a very low rate of locus-specific binding events was observed for the HLA-DP genetic locus, suggesting a different binding selectivity of these proteins with respect to HLA-DR and HLA-DQ proteins. Secondly, a predictor based on a support vector machine (SVM) classifier was designed to recognize HLA II-binding peptides. The efficiency of prediction was estimated using precision, recall (sensitivity), specificity, accuracy, F-measure, and area under the ROC curve values of random subsampled dataset in comparison with other supervised classifiers. Also the leave-one-out cross-validation was performed to establish the efficiency of the predictor. The availability of HLA II-peptide interaction dataset, HLA II-binding motifs, high-quality amino acid indices, peptide dataset for SVM training, and MATLAB code of the predictor is available at http://sysbio.icm.edu.pl/HLA .

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Binding Sites
  • Cluster Analysis
  • Computational Biology / methods
  • Histocompatibility Antigens Class II / classification*
  • Histocompatibility Antigens Class II / genetics
  • Histocompatibility Antigens Class II / metabolism
  • Humans
  • Peptides / metabolism
  • Phylogeny
  • Protein Binding / immunology
  • Reproducibility of Results

Substances

  • Histocompatibility Antigens Class II
  • Peptides