A photochemical transport model has been implemented to assess the PM(2.5) spatial and temporal distribution in Venice-Mestre. This is a large city of the eastern Po Valley, which is recognized having among the highest levels of many air pollutants in Europe. This study is a first attempt to evaluate PM(2.5) distribution in such a complex ecosystem strongly affected by several different environments (the adjacent Alps, the lagoon and the sea) that create a spatial discontinuity of climate. Model performance was tested with experimental results. Samples have been collected in three sites representative of different emission characteristics. A second simulation was performed with clean boundary conditions to check the influence of the background concentrations on the study domain. Local and regional contributions were found to be strongly dependent on seasonal conditions and on local meteorology. A further analysis was conducted to predict the PM(2.5) distribution with respect to air mass movements. The non-homogeneity of surfaces affects the Planetary Boundary Layer (PBL) behavior. This consequently influences the vertical distribution of PM(2.5) especially during cold seasons and on occasion of particular meteorological events.
Copyright © 2012 Elsevier B.V. All rights reserved.