Background: Drug incompatibility is a problem, especially when managing patients in intensive care units. We designed the present study to assess the impact of multilumen infusion access devices on the occurrence of known physical drug incompatibility through a controlled in vitro study.
Methods: Three infusion devices connected to a single-lumen catheter were studied: a standard set with 2-port manifold and 1-m extension set and 2 multilumen infusion access devices: a 3-lumen extension set and a 9-lumen extension set (Edelvaiss-Multiline™; Doran International, Toussieu, France). For the 9-lumen extension set, 3 infusion access combinations were studied. Furosemide, midazolam, and saline were infused simultaneously through 3 infusion devices. Three concentrations of furosemide were tested. The infusion rate of saline (carrier) was initially set at 100 mL/h and stepwise decreased by 10 mL/h until precipitate formation. Physical incompatibility was assessed by 2 tests: visual inspection and the subvisible particle count test according to the European Pharmacopeia. The lowest saline infusion rate to prevent visible precipitate and attain an acceptable particle count (i.e., to pass "the 2 tests") was reported for each infusion set.
Results: The standard set revealed visible precipitate even at the highest saline flow rate (100 mL/h). The 3-lumen device prevented drug precipitation using the 2 lowest furosemide concentrations with a saline infusion rate that decreased with furosemide concentration. The 9-lumen infusion access device prevented drug precipitation whatever the furosemide concentration for 2 access combinations using saline infusion rates of between 20 and 60 mL/h but not for a third access combination, despite saline infusion rates equal to 100 mL/h.
Conclusions: Infusion device characteristics appear to have an impact on the physical compatibility of the 2 drugs. Under specified conditions, the 9-lumen infusion access device prevents physical furosemide-midazolam incompatibility.