Using scanning tunneling spectroscopy, we study a 3D topological insulator Bi(2)Te(3) with a periodic structural deformation (buckling). The buckled surface allows us to measure the response of Dirac electrons in a magnetic field to the presence of a well-defined potential variation. We find that while the n=0 Landau level exhibits a 12 meV energy shift across the buckled structure at 7 T, the amplitude of this shift changes with the Landau level index. Modeling these effects reveals that the Landau level behavior encodes information on the spatial extent of their wave functions. Our findings have important implications for transport and magnetoresistance measurements in Dirac materials with engineered potential landscapes.