Purpose: The present study was conducted to investigate the effect of a temporally incoherent ('noise') magnetic field (MF) on radiofrequency radiation (RFR)-induced epidermal growth factor (EGF) receptor clustering and phosporylation in cultured cells.
Materials and methods: Human amniotic epithelial (FL) cells were exposed for 15 min to either a 1.8 GHz RFR (modulated at 217 Hz), a 2 μT incoherent MF, or concurrently to the RFR and incoherent MF. Epidermal growth factor treatment severed as the positive control. Epidermal growth factor receptor clustering on cellular membrane surface was analyzed using confocal microscopy after indirect immunofluorescence staining, and phosphorylation of EGF receptors was measured by western blot technology.
Results: Exposure of FL cells to the 1.8 GHz RFR at SAR (specific absorption rate) of 0.5, 1.0, 2.0, or 4.0 W/kg for 15 min induced EGF receptor clustering and enhanced phosphorylation on tyrosine-1173 residue, whereas exposure to RFR at SAR of 0.1 W/kg for 15 min did not significantly cause these effects. Exposure to a 2 μT incoherent MF for 15 min did not significantly affect clustering and phosphorylation of EGF receptor in FL cells. When superimposed, the incoherent MF completely inhibited EGF receptor clustering and phosphorylation induced by RFR at SAR of 0.5, 1.0, and 2.0 W/kg, but did not inhibit the effects induced at SAR of 4.0 W/kg.
Conclusion: Based on the data of the experiment, it is suggested that membrane receptors could be one of the main targets by which RFR interacts with cells. An incoherent MF could block the interaction to a certain extent.