Disambiguating the roles of area V1 and the lateral occipital complex (LOC) in contour integration

Neuroimage. 2013 Apr 1:69:146-56. doi: 10.1016/j.neuroimage.2012.11.023. Epub 2012 Nov 28.

Abstract

Contour integration, the linking of collinear but disconnected visual elements across space, is an essential facet of object and scene perception. Here, we set out to arbitrate between two previously advanced mechanisms of contour integration: serial facilitative interactions between collinear cells in the primary visual cortex (V1) versus pooling of inputs in higher-order visual areas. To this end, we used high-density electrophysiological recordings to assess the spatio-temporal dynamics of brain activity in response to Gabor contours embedded in Gabor noise (so-called "pathfinder displays") versus control stimuli. Special care was taken to elicit and detect early activity stemming from the primary visual cortex, as indexed by the C1 component of the visual evoked potential. Arguing against a purely early V1 account, there was no evidence for contour-related modulations within the C1 timeframe (50-100 ms). Rather, the earliest effects were observed within the timeframe of the N1 component (160-200 ms) and inverse source analysis pointed to principle generators in the lateral occipital complex (LOC) within the ventral visual stream. Source anlaysis also suggested that it was only during this relatively late processing period that contextual effects emerged in hierarchically early visual regions (i.e. V1/V2), consistent with a more distributed process involving recurrent feedback/feedforward interactions between LOC and early visual sensory regions. The distribution of effects uncovered here is consistent with pooling of information in higher order cortical areas as the initial step in contour integration, and that this pooling occurs relatively late in processing rather than during the initial sensory-processing period.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Mapping*
  • Electroencephalography
  • Evoked Potentials / physiology*
  • Form Perception / physiology*
  • Humans
  • Male
  • Signal Processing, Computer-Assisted
  • Visual Cortex / physiology*
  • Visual Perception / physiology*
  • Young Adult