Smectites are an important group of clay minerals that experience swelling upon water adsorption. This paper uses molecular dynamics with the CLAYFF force field to simulate isothermal isobaric water adsorption of interlayer Wyoming Na-montmorillonite, a member of the smectite group. Nanoscale elastic properties of the clay-interlayer water system are calculated from the potential energy of the model system. The transverse isotropic symmetry of the elastic constant matrix was assessed by calculating Euclidean and Riemannian distance metrics. Simulated elastic constants of the clay mineral are compared with available results from acoustic and nanoindentation measurements.