The delayed jellyfish envenomation syndrome (DJES) with serious multiple organ dysfunction or systemic damages, generally developed 2 h after jellyfish stings, deserves special attention for it is very meaningful to the clinical interventions. To set up a DJES model as well as to obtain more details about its process, an integrative approach, including clinical chemistry, pathology and immunohistochemistry, was conducted to simultaneously monitor the effects of tentacle extract (TE) from the jellyfish Cyanea capillata on the vital target organs (heart, lung, liver and kidney). Our results showed that the TE from C. capillata could induce diverse toxic effects on these organs, among which the liver and kidney injuries seemed to be more serious than cardiopulmonary injuries and might be the leading causes of death in rats with DJES. In summary, we have established a DJES model with multiple organ dysfunction, which could facilitate the research on its underlying mechanism as well as the development of specific prevention or therapy strategies against jellyfish envenomation. The application of this model suggested that the possible mechanism of DJES might be attributed to the synergy of cytotoxicity, vasoconstriction effect and other specific target organ toxicities of jellyfish venom.
Copyright © 2012 Elsevier Ltd. All rights reserved.