Context: A previous cross-sectional study showed an association of migraine with a higher prevalence of magnetic resonance imaging (MRI)-measured ischemic lesions in the brain.
Objective: To determine whether women or men with migraine (with and without aura) have a higher incidence of brain lesions 9 years after initial MRI, whether migraine frequency was associated with progression of brain lesions, and whether progression of brain lesions was associated with cognitive decline.
Design, setting, and participants: In a follow-up of the 2000 Cerebral Abnormalities in Migraine, an Epidemiological Risk Analysis cohort, a prospective population-based observational study of Dutch participants with migraine and an age- and sex-matched control group, 203 of the 295 baseline participants in the migraine group and 83 of 140 in the control group underwent MRI scan in 2009 to identify progression of MRI-measured brain lesions. Comparisons were adjusted for age, sex, hypertension, diabetes, and educational level. The participants in the migraine group were a mean 57 years (range, 43-72 years), and 71% were women. Those in the control group were a mean 55 years (range, 44-71 years), and 69% were women. MAIN OUTCOME MEASURES Progression of MRI-measured cerebral deep white matter hyperintensities, infratentorial hyperintensities, and posterior circulation territory infarctlike lesions. Change in cognition was also measured.
Results: Of the 145 women in the migraine group, 112 (77%) vs 33 of 55 women (60%) in the control group had progression of deep white matter hyperintensities (adjusted odds ratio [OR], 2.1; 95%CI, 1.0-4.1; P = .04). There were no significant associations of migraine with progression of infratentorial hyperintensities: 21 participants (15%) in the migraine group and 1 of 57 participants (2%) in the control group showed progression (adjusted OR, 7.7; 95% CI, 1.0-59.5; P = .05) or new posterior circulation territory infarctlike lesions: 10 of 203 participants (5%) in the migraine group but none of 83 in the control group (P = .07). There was no association of number or frequency of migraine headaches with progression of lesions. There was no significant association of high vs nonhigh deep white matter hyperintensity load with change in cognitive scores (-3.7 in the migraine group vs 1.4 in the control group; 95% CI, -4.4 to 0.2; adjusted P = .07).
Conclusions: In a community-based cohort followed up after 9 years, women with migraine had a higher incidence of deep white matter hyperintensities but did not have significantly higher progression of other MRI-measured brain changes. There was no association of migraine with progression of any MRI-measured brain lesions in men.