Channel sialic acids limit hERG channel activity during the ventricular action potential

FASEB J. 2013 Feb;27(2):622-31. doi: 10.1096/fj.12-214387. Epub 2012 Nov 8.

Abstract

Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Animals
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • ERG1 Potassium Channel
  • Ether-A-Go-Go Potassium Channels / chemistry
  • Ether-A-Go-Go Potassium Channels / genetics
  • Ether-A-Go-Go Potassium Channels / metabolism*
  • Glycosylation
  • Heart Ventricles / metabolism*
  • Humans
  • Ion Channel Gating
  • Models, Cardiovascular
  • Patch-Clamp Techniques
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Sialic Acids / metabolism*

Substances

  • ERG1 Potassium Channel
  • Ether-A-Go-Go Potassium Channels
  • KCNH2 protein, human
  • Recombinant Proteins
  • Sialic Acids