Phosphorylation and nitration of protein tyrosine residues are thought to play a role in signaling pathways at the nerve terminal and to affect functional properties of proteins involved in the synaptic vesicle (SV) exo-endocytotic cycle. We previously demonstrated that the tyrosine residues in the C-terminal domain of the SV protein Synaptophysin (SYP) are targets of peroxynitrite (PN). Here, we have characterized the association between SYP and c-src tyrosine kinase demonstrating that phosphorylation of Tyr(273) in the C-terminal domain of SYP is crucial in mediating SYP binding to and activation of c-src. SYP forms a complex with Dynamin I (DynI), a GTPase required for SV endocytosis, which may be regulated by tyrosine phosphorylation of SYP. We here report that, in rat brain synaptosomes treated with PN, the formation of SYP/DynI complex was impaired. Noteworthy, we found that DynI was also modified by PN. DynI tyrosine phosphorylation was down-regulated in a dose-dependent manner, while DynI tyrosine nitration increased. Using mass spectrometry analysis, we identified Tyr(354) as one nitration site in DynI. In addition, we tested DynI self-assembly and GTPase activity, which are enhanced by c-src-dependent tyrosine phosphorylation of DynI, and found that both were inhibited by PN. Our results suggest that the site-specific tyrosine residue modifications may modulate the association properties of SV proteins and serve as a regulator of DynI function via control of self-assembly, thus influencing the physiology of the exo-endocytotic cycle.
Copyright © 2012 Elsevier B.V. All rights reserved.