Rapidly quantifying drug sensitivity of dispersed and clumped breast cancer cells by mass profiling

Analyst. 2012 Dec 7;137(23):5495-8. doi: 10.1039/c2an36058f. Epub 2012 Oct 11.

Abstract

Live cell mass profiling is a promising new approach for rapidly quantifying responses to therapeutic agents through picogram-scale changes in cell mass over time. A significant barrier in mass profiling is the inability of existing methods to handle pleomorphic cellular clusters and clumps, which are more commonly present in patient-derived samples or tissue cultures than are isolated single cells. Here we demonstrate automated Live Cell Interferometry (LCI) as a rapid and accurate quantifier of the sensitivity of single cell and colony-forming human breast cancer cell lines to the HER2-directed monoclonal antibody, trastuzumab (Herceptin). The relative sensitivities of small samples (<500 cells) of four breast cancer cell lines were determined tens-to-hundreds of times faster than is possible with traditional proliferation assays. These LCI advances in clustered sample assessment and speed open up the possibility for therapeutic response testing of patient-derived solid tumor samples, which are viable only for short periods ex vivo and likely to be in the form of cell aggregates and clusters.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antibodies, Monoclonal, Humanized / therapeutic use*
  • Antineoplastic Agents / therapeutic use*
  • Breast Neoplasms / drug therapy*
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm
  • Female
  • Humans
  • Interferometry / methods*
  • Receptor, ErbB-2 / biosynthesis
  • Trastuzumab

Substances

  • Antibodies, Monoclonal, Humanized
  • Antineoplastic Agents
  • ERBB2 protein, human
  • Receptor, ErbB-2
  • Trastuzumab