Prediction, refinement, and persistency of transmembrane helix dimers in lipid bilayers using implicit and explicit solvent/lipid representations: microsecond molecular dynamics simulations of ErbB1/B2 and EphA1

Proteins. 2013 Mar;81(3):365-76. doi: 10.1002/prot.24192. Epub 2012 Nov 5.

Abstract

All-atom simulations are carried out on ErbB1/B2 and EphA1 transmembrane helix dimers in lipid bilayers starting from their solution/DMPC bicelle NMR structures. Over the course of microsecond trajectories, the structures remain in close proximity to the initial configuration and satisfy the majority of experimental tertiary contact restraints. These results further validate CHARMM protein/lipid force fields and simulation protocols on Anton. Separately, dimer conformations are generated using replica exchange in conjunction with an implicit solvent and lipid representation. The implicit model requires further improvement, and this study investigates whether lengthy all-atom molecular dynamics simulations can alleviate the shortcomings of the initial conditions. The simulations correct many of the deficiencies. For example, excessive helix twisting is eliminated over a period of hundreds of nanoseconds. The helix tilt, crossing angles, and dimer contacts approximate those of the NMR-derived structure, although the detailed contact surface remains off-set for one of two helices in both systems. Hence, even microsecond simulations are not long enough for extensive helix rotations. The alternate structures can be rationalized with reference to interaction motifs and may represent still sought after receptor states that are important in ErbB1/B2 and EphA1 signaling.

Publication types

  • Research Support, American Recovery and Reinvestment Act
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Hydrogen Bonding
  • Lipid Bilayers / chemistry*
  • Magnetic Resonance Spectroscopy
  • Molecular Dynamics Simulation*
  • Molecular Sequence Data
  • Protein Interaction Mapping
  • Protein Multimerization*
  • Protein Structure, Secondary
  • Receptor, EphA1 / chemistry*
  • Receptor, ErbB-2 / chemistry*
  • Solvents / chemistry
  • Static Electricity
  • Time Factors

Substances

  • Lipid Bilayers
  • Solvents
  • Receptor, EphA1
  • Receptor, ErbB-2